" BioOne COMPLETE

EVOLUTION OF THE CHOLLAS (CACTACEAE)

Authors: Mayer, Michael S., and Rebman, Jon P.
Source: Madrofio, 68(2) : 109-121

Published By: California Botanical Society

URL: https://doi.org/10.3120/0024-9637-68.2.109

BioOne Complete (complete.BioOne.org) is a full-text database of 200 subscribed and open-access titles
in the biological, ecological, and environmental sciences published by nonprofit societies, associations,
museums, institutions, and presses.

Your use of this PDF, the BioOne Complete website, and all posted and associated content indicates your
acceptance of BioOne’s Terms of Use, available at www.bioone.org/terms-of-use.

Usage of BioOne Complete content is strictly limited to personal, educational, and non - commercial use.
Commercial inquiries or rights and permissions requests should be directed to the individual publisher as
copyright holder.

BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit
publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to
critical research.

Downloaded From: https://bioone.org/journals/Madrofio on 19 Sep 2021
Terms of Use: https://bioone.org/terms-of-use Access provided by California Botanical Society



MADRONO, Vol. 68, No. 2, pp. 109-121, 2021

EVOLUTION OF THE CHOLLAS (CACTACEAE)
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mayer@sandiego.edu

JON P. REBMAN
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ABSTRACT

Cacti with the common name cholla are classified into several genera of the subfamily Opuntioideae
(Cactaceae), and appear to be a monophyletic group. Although recent studies have provided strong resolution
of the base of this group, assessment of evolutionary processes within genera have been limited due to taxon
sampling. Analysis of four spacer and intron sequences of the chloroplast genome reveals evolutionary
patterns and trends that are largely congruent with other recent studies. We concur with recent calls for the
recognition of Micropuntia pulchella as monotypic and distinct from Grusonia, the name we use to refer to all
species sometimes classified under Marenopuntia and Corynopuntia. Grusonia is monophyletic, and
Cylindropuntia is borne on two clades of differing branch lengths. By incorporating the elements of ploidy,
reproduction, and sequence divergence, we provide new insight into allopolyploid ancestry, the adaptive
impact of ploidal-level variation in species, and the role of reproductive mode in diversification rates in the

chollas.

Key Words: Cylindropuntia, chloroplast DNA, Grusonia, phylogeny, polyploidy.

The common name cholla, in combination with a
great range of adjectives (club, dwarf, pencil,
jumping, etc.) has been applied to mat-forming,
shrubby, to tree-like species of cacti with segmented,
cylindrical stems in North America. They are a
familiar feature of the Chihuahuan, Sonoran, and
Mohave deserts, and vary in distribution from
narrow endemics to species with ranges that span
multiple states on both sides of the U.S.-Mexican
border. And although recent work has included the
chollas in broader analyses of cactus phylogeny and
taxonomy, treatment of evolutionary trends and
interspecific relationships in this group have been
less common. The present study aims to add to our
understanding of the natural history of the chollas.

Recent classifications of the 70 or so cholla species
have distributed them among a variety of genera:
Cylindropuntia (Engelm.) F.M.Knuth, Corynopuntia
F.M.Knuth, Grusonia Rchb.f. ex Britton & Rose,
Marenopuntia Backeberg, or Micropuntia Daston.
Contemporary phylogenetic analyses portray the
chollas as monophyletic within subfamily Opuntioi-
deae (Griffith and Porter 2009). The work of
Barcenas et al. (2011) and Ritz et al. (2012) generated
a proposal for three tribes in the Opuntioideae:
Opuntieae, Tephrocacteae, and Cylindropuntieae,
the latter of which would include the traditional
chollas plus Pereskiopsis Britton & Rose and
Quiabentia Britton & Rose. Recent work also
resolves this pattern (Majure et al. 2019; Kohler et
al. 2020).

Cylindropuntia is the largest genus of chollas; it
comprises approximately 40 species, displays the
broadest geographic range, and its circumscription is
not currently debated. Cylindropuntia species are
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distinguished from the other chollas primarily by
smooth spines that are fully covered by deciduous,
papery sheaths. The remaining chollas have at one
extreme all been assigned to Grusonia Rchb.f. ex
Britton & Rose (sensu Stuppy 2002) or split among
Grusonia, Corynopuntia, Marenopuntia, and Micro-
puntia in various treatments. These species contrast
with Cylindropuntia by exhibiting mostly flattened,
rough spines, with a spine sheath lacking or covering
just the tip of the spine. The history of taxonomic
revisions involving chollas has been summarized
elsewhere (Barcenas 2016).

Diversification of the chollas has been tied to the
expansion of the deserts of North America and the
climatic fluctuations of the Pleistocene epoch (Ara-
kaki et al. 2011; Hernandez-Hernandez et al. 2014;
Majure et al. 2019). Adaptation and speciation were
likely facilitated by hybridization and polyploidy,
both of which are common in the chollas (Pinkava
2002). Polyploidy, following hybridization (allopoly-
ploidy) or not (autopolyploidy), has resulted in
chromosome count variation among and sometimes
within species of Cylindropuntia ranging from 2n =
22 to 88 (Pinkava 2002).

Despite solid recent work revealing the main
clades of the chollas, there is still need for resolution
of the patterns within these clades, incorporating
both diploid and polyploid species. In the present
study, we assess sequence variation in spacer regions
and introns of the chloroplast genome to provide
phylogenetic insight. Prior work has shown the utility
of non-coding chloroplast DNA to phylogenetic
studies both across vascular plants (Shaw et al.
2005, 2007) and among cholla species specifically
(Wallace and Dickie 2002; Griffith and Porter 2009;
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Barcenas et al. 2011; Barcenas 2016). For the
purposes of interpreting allopolyploid ancestry, we
generally assume maternal inheritance of the chloro-
plast genome, although biparental inheritance has
been noted in some cactus species (Corriveau and
Coleman 1988, Zhang et al. 2003). Here we present a
denser sampling of both diploid and polyploid
species than other recent studies of the Cylindro-
puntieae, with the goal of bringing new insights into
the natural history of the chollas.

MATERIALS AND METHODS

Taxon Sampling

All sequences analyzed in the present study were
generated from specimens we collected in the field or
obtained from the Desert Botanical Garden (Phoe-
nix, AZ). We aimed for exhaustive sampling of the
species, regardless of ploidy, with multiple represen-
tatives included in the analysis where sample supply
and PCR success allowed. Opuntia littoralis (En-
gelm.) Cockerell served to root the trees. A total of
86 exemplars representing 51 species were analyzed;
taxon authorship and reported chromosome num-
bers are provided in Table 1.

DNA Extraction and Analysis

DNA extraction was performed on lyophilized
stem tissue following the protocol of Pepper and
Norwood (2001). DNA amplification primer se-
quences for the rrnHCYS-pshA intergenic spacer,
the rpLI16 intron, and the rpSI6 intron followed
Shaw et al. (2005), and for the #nQVY9-5'1pSI6
intergenic spacer, Shaw et al. (2007). Amplification of
all regions used the following parameters: 80°C, 5
min; 35X (95°C, 1 min; 50°C, 1 min with a ramp of
0.3°C/s; 65°C, 4 min); 65°C, 5 min. Sequencing of
purified PCR products (PureLink kit: Invitrogen,
San Diego, CA) utilized the same primers as PCR,
and was carried out by Retrogen, Inc. (San Diego,
CA). Alignment of resulting sequences (Genbank
accession numbers: Table 1) was done using MUS-
CLE (service of EMBL-EBL: ebi.ac.uk/Tools/msa/
muscle/) and by eye; gaps were treated as missing
data. Except for the Bayesian and parsimony
analyses, indels were added to the data set as binary
characters following a simple indel coding strategy
(Simmons and Ochoterena 2000). Highly variable
microsatellite loci (combinations of mostly uni-, di-,
and trinucleotide repeats) were excluded from the
analyses.

Phylogenetic analyses using maximum likelihood
(ML) and Bayesian inference (BI) were performed on
the CIPRES Science Gateway (Miller et al. 2010).
ML analysis (RAXML 8.2.12 on XSEDE, Stamatakis
2014) employed the GTRGAMMA model of nucle-
otide substitution to estimate the best tree and
calculate bootstrap support for the branches. Auto-
mated model selection in PAUP* (version 4.0a build
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162, Sinauer Associates, Sunderland, MA) identified
sequence evolution model HKY + I 4+ G, which was
employed for the BI analysis (MrBayes 3.2.6 on
XSEDE, Ronquist et al. 2012). Four Markov Chain
Monte Carlo (MCMC) chains were run for 1,500,000
generations, with sampling every 100 generations.
Assessment of stationarity of -/nL values of these
trees informed a 20% burn-in, and the remaining
trees were used to construct a majority-rule consen-
sus tree. Parsimony bootstrap values were generated
using the PAUP* “fast” option and 100,000 repli-
cates.

RESULTS

We generated all 339 sequences analyzed in the
present study (Table 1); five sequences are missing
due to amplification or sequencing failure. The
aligned and concatenated sequence data set totaled
3147 bases (rrnH(SY9-psbA =481; rpL16 =1188;
rpS16 =858; trnQVV9-5'rps16 =620), of which 162
were excluded due to sequence ambiguity or the
hypervariability associated with microsatellite loci;
the sequences of this refined set yielded 24, 81, 34,
and 27 parsimony informative characters, respective-
ly. Thirty binary characters were added to the
analysis to account for indel variation, for use in
the Bayesian and parsimony bootstrap analyses.

There was no conflict among the Maximum
Likelihood Best Tree (= ML best tree), the Bayesian
Consensus Tree, and the Parsimony Bootstrap Tree,
allowing us to use the ML Best Tree to show
topology, branch length, and clade support from all
analyses (Fig. 1). At the base of all trees, a poorly
supported (60% Maximum Likelihood Bootstrap—
MB, 52% Bayesian Posterior Probability—BP, 56%
Parsimony bootstrap-PB) clade bears Micropuntia
pulchella (Engelm.) M.P.Griff. and Pereskiopsis and
is sister to the strongly supported (100%, 100%,
98%) clade of Cylindropuntia and remaining Gruso-
nia (including Corynopuntia and Marenopuntia)
species (Fig. 1). This echoes previous studies (Barce-
nas 2016; Griffith and Porter 2009; Majure et al.
2019) that showed substantial distinction of Micro-
puntia pulchella from any other species of Grusonia.

All trees exhibit the Grusonia + Cylindropuntia
trichotomy, which is supported by eight synapomor-
phies, including a large deletion. Although this
creates uncertainty about the monophyly of Cylin-
dropuntia (Fig. 1), these same clades were resolved by
Barcenas (2016) and Majure et al. (2019), but with
Grusonia sister to a monophyletic Cylindropuntia,
supported by 79% MB, 57% BP, and 100% PB
(Barcenas 2016), and by 100% MB and PB (Majure
et al. 2019). The three clades are labeled Cylindro-
puntia I, Cylindropuntia II, and Grusonia and are
supported by three, eleven, and six apomorphies,
respectively, with high support from each measure
(Fig. 1). Thirty indels were coded and used only in
the Bayesian analysis, and included 0, 5, and 1
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FIG. 1. Best tree resulting from Maximum Likelihood analysis of cpDNA sequence data, presented as a phylogram. Support
noted for clades include Maximum Likelihood Bootstrap percentage, Bayesian Posterior Probability, and Parsimony
Bootstrap percentage, respectively. Black dots mark clades or species exhibiting dry fruit; after the specimen identifier, C, M,
and S refer to species range in Chihuahuan, Mohave, or Sonoran deserts, respectively. The arrows connect the estimated

origin date (Hernandez-Hernandez et al. 2014) to selected nodes.

synapomorphies, respectively, for the aforemen- Grusonia clade,

which corresponds to Corynopuntia

tioned clades. F.M.Knuth (Fig. 1). The trichotomy at the base of

On the Grusonia clade, G. bradtiana (J.M.Coult.)  this clade features the lineages of G. invicta (Brande-
Britton & Rose, the type species of Grusonia and  gee) E.F.Anderson (central Baja California, Mexico)
native of the Chihuahuan desert (Mexican state of and G. marenae (S.H.Parsons) E.F.Anderson (So-

Coahuila), is shown as sister to the rest of the nora, Mexico),
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been described as a monotypic genus (Marenopuntia
marenae Backeberg). Grusonia wrightiana
(E.M.Baxter) E.M.Baxter (Sonoran desert and Baja
California) is sister to the larger remaining clade,
which is split into two lineages (Fig. 1): a more
southern-centered clade of U.S. and Mexican Chi-
huahuan desert species (G. aggeria (Ralson &
Hilsenb.) E.F.Anderson, G. bulbispina (Engelm.)
H.Robinson, G. grahamii (Engelm.) H.Robinson,
G. moelleri (A.Berger) E.F.Anderson, G. schottii
(Engelm.) Robinson, and G. vilis (Rose) H. Rob-
inson) and a more northern- and western-centered
clade of Chihuahuan, Sonoran and Mohave desert
species of U.S. and Mexico (G. clavata (Engelm.)
H.Robinson, G. densispina (Ralston & Hilsenb.)
Pinkava, G. emoryi (Engelm.) Pinkava, and G.
parishii (Orcutt) Pinkava). Both clades include
species of a group called the Grusonia schottii
complex (G. aggeria, G. emoryi, G. grahamii, G.
schottii, G. densispina; Ralston 1987; Ralston and
Hilsenbeck 1989, 1992), revealing paraphyly of this
group unless it is expanded to also include at least G.
clavata, G. parishii, G. bulbispina, and G. vilis. The
two representatives of G. emoryi do not appear as
sisters in this northwestern clade, which may indicate
divergence that warrants reconsideration of G. stanlyi
Engelm. (represented by specimen Baker 10897),
which had been synonymized with G. emoryi by
Pinkava (1999).

Cylindropuntia I, comprising C. bigelovii (En-
gelm.) F.M.Knuth, C. tunicata (Lehmann)
F.M.Knuth, and C. fosbergii C.B.Wolf, combines
species of series Bigelovianae and Imbricatae (Britton
and Rose 1919; Hunt 2006), and is thus surprising
from a morphological perspective. The close rela-
tionship of Cylindropuntia bigelovii, a common
species from Baja California to the Mojave and
Sonoran desert of Mexico, CA, AZ, NV, and NM.,
and C. tunicata, which is widespread in the Chihua-
huan desert of central and northern Mexico to
southern Texas, has been revealed only recently
(Barcenas 2016; Majure et al. 2019). But despite their
differences, both species produce stem segments that
are easily detached, have prominent tubercules,
similar numbers of spines per areole, and similar
size and colors of glochids. Both produce fleshy,
spineless fruits, and both species have the unusual
distinction of producing roots of medicinal value to
indigenous people, C. bigelovii as a laxative and C.
tunicata as a diuretic (Anderson 2001).

Cylindropuntia II bears the majority of Cylindro-
puntia species, and features a basal branch that bears
C. echinocarpa (Engelm. & Bigelow) F.M.Knuth,
which is widespread in the Mohave and Sonoran
deserts of Baja California and Sonora, as well as in
California, Nevada, and Arizona.

Cylindropuntia anteojoensis (Pinkava) E.F.Ander-
son is sister to the remainder of this clade; trees with
lower support (not shown) commonly placed this
species on a clade with C. ramosissima (Engelm.)
F.M.Knuth and C. tesajo (Engelm. ex Coult)
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F.M.Knuth, which form a more derived clade (Fig.
1)—a pattern also shown by Barcenas et al. (2016)
and Majure et al. (2019). All three species exhibit
narrow “pencil-like” stems and dry fruit; C. ante-
ojoensis is eastern-most, in the Chihuahuan desert of
Coahuila, Mexico; C. ramosissima is widespread in
the Sonoran and Mohave deserts and northeastern
Baja California, and C. fesajo appears to be an
endemic derivative of the former species in Baja
California.

Cylindropuntia cholla (F.A.C.Weber) F.M.Knuth
and C. fulgida (Engelm.) F.M.Knuth form a clade;
both species produce fleshy, proliferating fruits, and
are similar in stature and flower color. Cylindropuntia
cholla is a species of Baja California, whereas C.
fulgida ranges from Arizona south into the states of
Sonora and Sinaloa in Mexico.

Another clade bears the widespread Cylindropun-
tia leptocaulis (DC.) F.M.Knuth, whose range spans
the breadth of northern and central Mexico, as well
as the southern U.S., from Arizona to Oklahoma and
Texas. Sharing this clade are C. lindsayi (Rebman)
Rebman, endemic to southern Baja California, C.
kleiniae, of the Chihuahuan desert of the U.S. and
Mexico, and C. caribaea (Britton & Rose)
F.M.Knuth, the sole cholla of the Caribbean, native
to Hispaniola. It is not clear whether dispersal or
vicariance are responsible for the isolation and
speciation of C. lindsayi and C. caribaea. The species
of this clade share tall stature (1.8-3 m) slender
(pencil-like) stem segments, and fleshy fruit. The
presence of the tetraploid C. kleiniae and C. lindsayi
on this clade with C. leptocaulis, which exists in
diploid, triploid, and tetraploid forms, suggests one
or more of these species could be an allopolyploid,
and at least one of the others could be a parent.

The more northern and upland species Cylindro-
puntia whipplei (Engelm. & Bigelow) F.M.Knuth
shares a clade with the narrow endemic C. abyssi
(Hester) Backeb., which is suspected to be of hybrid
origin, possibly involving C. bigelovii or C. acantho-
carpa (Engelm. & Bigelow) F.M.Knuth (Pinkava
2003; Hunt 2006). If C. abyssi is indeed a hybrid, the
present study provides evidence that the maternal
parent is C. whipplei.

A large, well-supported lineage comprises the
remaining species of this clade. Although morpho-
logically diverse, these species share a distribution
that is limited to the more western and northern
deserts (Sonoran, Mohave, and Baja California).
Much of the structure revealed in the analysis of this
clade is not robust, but some patterns merit
consideration.

Cylindropuntia acanthocarpa and C. versicolor
(Engelm. ex Coult.) F.M.Knuth overlap in range in
the Sonoran Desert of Arizona and Mexico. Note
that recent work has reduced C. versicolor to a
subspecies of C. thurberi (Engelm.) F.M.Knuth
(Baker et al. 2019), which could not be represented
in the present study.
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Besides sharing a clade, Cylindropuntia imbricata
(Haw.) F.M.Knuth and C. spinosior (Engelm.)
F.M.Knuth also have overlapping ranges in the
deserts of Arizona, New Mexico, and northern
Mexico. Baker et al. (2019) have also reduced C.
spinosior to a subspecies of C. imbricata.

Three narrow endemics of Baja California: C.
cedrosensis Rebman (Isla de Cedros), C. santamaria
(E.M.Baxter) Rebman (Isla Magdalena), and C.
sanfelipensis (Rebman) Rebman (San Felipe Desert),
share a clade with the more widespread C. californica
var. californica (Torrey & A.Gray) F.M.Knuth,
suggesting a possible progenitor role for the latter
species. Due to its similarity to C. wolfii (L.D.Ben-
son) M.A.Baker, we expected that C. sanfelipensis
would show a close relationship with that species.
However, the hexaploid genome of C. sanfelipensis
may indicate an allopolyploid origin that might have
included paternal contributions from C. wolfii, also a
hexaploid.

Cylindropuntia ganderi (C.B.Wolf) Rebman &
Pinkava) has been segregated from C. acanthocarpa
(Rebman 2001), a change that is entirely justified by
the distinction these taxa exhibit in the tree. The
position of C. bernardina (Engelm. ex Parish)
M.A.Baker et al., formerly C. california var. parkeri
(J.M.Coult.) Pinkava, as a sister to specimens of C.
ganderi, rather than the other varieties of C.
californica, affirms its recent recognition (Baker and
Pinkava 2018). Cylindropuntia bernardina is found at
the northern edge of the range of C. ganderi in
southern California.

The presence of C. alcahes (F.A.C.Weber)
F.M.Knuth and C. prolifera (Engelm.) F.M.Knuth
together on a clade is expected, as the latter probably
originated via hybridization of the former with C.
cholla (Mayer et al. 2000). The placement of a
representative of C. californica var. rosarica (G.E.L-
inds.) Rebman on this clade, isolated from C.
californica var. californica, is another indicator that
this taxon needs additional study.

The union of C. molesta (Brandegee) F.M.Knuth
and C. wolfii on a clade is unexpected and may be
spurious. Alternatively, the hexaploid C. wolfii and
the octoploid C. molesta may share genomes through
allopolyploid ancestry.

DiscussioN

Our work concurs with previous studies that
propose reviving Micropuntia to recognize a mono-
typic M. pulchella (Griffith 2002; Griffith and Porter
2009; Barcenas 2016; Majure et al. 2019). Grusonia
(Micropuntia) pulchella does not share a clade with
the other members of the Grusonia clade, which in
fact share a more recent ancestor with Cylindropun-
tia. The morphological and ecological case for
Micropuntia pulchella is also strong, including unique
features of the stem tuber, spine angle, areole wool,
habit, and geography (Griffith 2002).
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The topology of the Grusonia clade supports
either a monotypic Grusonia (= G. bradtiana Britton
and Rose) and monophyletic Corynopuntia
F.M.Knuth, or a Grusonia sensu lato (Stuppy 2002),
which includes the entire clade. The former taxo-
nomic proposal, however, seems to overemphasize
the distinction of G. bradtiana from the remaining
species of the Grusonia clade, either morphologically
or genetically (Fig. 1; see Majure et al. (2019) for a
thorough examination of the options for Grusonia
taxonomy). Consequently, we concur with those
(Robinson 1973; Majure et al. 2019) promoting
subsuming all Corynopuntia species into a more
inclusive Grusonia.

History of the Chollas

Ancestral elements of subfamily Opuntioideae
originated in the central Andes of South America,
and with other lineages of Cactaceae extended their
range into North America (Raven and Axelrod 1978;
Wallace and Dickie 2002). The northward migration
and radiation of the chollas appears tied to the
expansion of the North American deserts beginning
in the mid-Miocene (Arakaki et al. 2011; Hernandez-
Hernandez et al. 2014), approximately 8-15 mya
(Van Devender and Brusca 2015). The emergence of
tribe Cylindropuntieae has been estimated to be 9.05
mya (no credibility interval provided; Hernandez-
Hernandez et al. 2014), although a more recent
estimate places the origin at approximately 17.9 mya
(14.8-20.4 mya; Majure et al. 2019). Cylindropun-
tieae probably originated in South America and
expanded north, evidenced by the South American
endemic Quiabentia: opuntioids with large, persistent
leaves and other plesiomorphic features. Pereksiop-
sis, the other leafy, non-cholla genus of the tribe is
native to southern Mexico; therefore the “cholla”
elements of tribe Cylindropuntieae are products of
the North American deserts, ranging from central
Mexico to the southern and western United States.

Divergence time analyses of Hernandez-Hernan-
dez et al. (2014) calculated a date of 4.9 mya (ca. 2.7-
7.7 mya) for the common ancestor of Grusonia +
Cylindropuntia. This suggests a late Miocene-Plio-
cene time frame for divergence of the three major
clades of chollas; an earlier date of 12 mya (9.3-14.5
mya) has also been suggested (Majure et al. 2019).
However, both sets of estimates suggest a great deal
of cholla speciation occurred during the Pleistocene,
<2.5 mya.

The Hernandez-Hernandez et al. (2014) study of
224 species, representing ca. 85% of the generic
diversity of the Cactaceae, also detected a signifi-
cantly heightened diversification rate for the Grusonia
+ Cylindropuntia clade—which is most evident in the
branch lengths of clade Cylindropuntia II (Fig. 1).
Studies of diversification times in Cereus (Silva et al.
2017) and Pilosocereus (Lavor et al. 2019) support
the hypothesis that the multiple glacial and intergla-
cial episodes of the Pleistocene drove the radiation of
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TABLE 2. COMPARISON OF CHROMOSOME NUMBER, RANGE SIZE, AND SISTER SPECIES STATUS FOR SELECTED PAIRS OF

CYLINDROPUNTIA SISTER SPECIES.

Chromosome

Sister species number Range (W=widespread, N=narrow) Isolation

C. leptocaulis 22,33, 44 W: across northern Mexico and southern U.S. Sea of Cortez

C. lindsayi 44 N: Baja California Sur

C. ramosissima 22, 44 W: Mojave and Sonoran deserts of U.S. and Mexico, Sea of Cortez
and extreme northeastern Baja California

C. tesajo 22 N: Central Baja California

C. whipplei 22, 44 W: high desert, grassland, sagebrush, and pine forest Peripatric?
of AZ, CO, NM, and UT, U.S.

C. abyssi 22 N: Mohave Co., AZ, U.S.

C. bigelovii 22,33 W: Sonoran desert of U.S. and Baja California Peripatric?

C. fosbergii 33 N: one population in eastern San Diego Co., CA

C. cholla 22, 33, 44 W: throughout Baja California Sea of Cortez

C. fulgida 22,33 W: Sonoran desert of U.S. and northern Mexico

these genera. Expansion and contraction of the
North American deserts occurred repeatedly through
the Pleistocene, with the most recent expansion of the
Sonoran desert into southern Arizona and California
occurring just 9000 years ago (Van Devender and
Brusca 2015). The formation of the Gulf of
California (Sea of Cortez) may have had a role in
the divergence of at least three sister-species pairs: C.
cholla/C. fulgida, C. leptocaulis/C. lindsayi, and C.
ramosissima/C. tesajo (Table 2); the Gulf started
opening approximately 10 mya and is still widening
(Moore and Buffington 1968).

The increase in diversification rate noted in the
chollas may have been facilitated not only by
desertification and climate fluctuation, but also by
intrinsic genetic and reproductive processes of these
taxa. Hybridization is common among chollas, and
can lead to the origin of fertile allopolyploid species,
but autopolyploidy is also common (Pinkava 2002).
Moreover, the ability of chollas to reproduce
vegetatively via stem segment propagules can allow
sterile odd-ploidy auto- and allopolyploids to not
only survive, but possibly benefit from the dosage
effects of extra sets of chromosomes (Baker and
Pinkava 1987, 2018; Pinkava 2002). Six Cylindropun-
tia species (C. alcahes, C. bigelovii, C. fulgida, C.
munzii (C.B.Wolf) Backeb., C. ramosissima, and C.
tunicata) exist as diploids or triploids, and in at least
one species, C. bigelovii, the triploids exhibit a greater
number of plants and size of range than the diploids
(Pinkava 2002). In general, polyploidy in subfamily
Opuntiodeae has been detected in 64.3% of species, a
rate that far exceeds the other subfamilies (Cactoi-
deae = 12.5%, Pereskioideae = 0.0%) (Pinkava
2002). Our calculation of polyploidy rates, omitting
hybrids, is 60% for Cylindopuntia and 47% for
Grusonia (see Baker and Pinkava 2018). Moreover, in
twelve of forty Cylindropuntia species, autopolyploi-
dy has resulted in at least two ploidal levels, in
Grusonia it is eight of 17 species (Table 1). And
among the clades bearing Cylindropuntia species (Fig.
1), in every case where there are clear sister-species
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pairs that differ in numbers of documented ploidy
levels, the species with greater ploidal variation have
larger ranges, usually much larger (Table 2). This
pattern may simply indicate a correlation between
population size and potential for ploidy variation, or
it may indicate the potential niche diversity that
accompanies ploidal level diversity, a consequence of
the myriad ways polyploidy stokes the evolutionary
potential of plants (Stebbins 1950; Soltis and Soltis
2000; Baker and Pinkava 2018).

Cylindropuntia I and II. A monophyletic Cylin-
dropuntia did not achieve sufficient support in our
analyses, although this resolution has been found in
other studies (Barcenas 2016; Majure et al., 2019).
The cholla trichotomy suggests a rapid divergence of
these three clades during the formation of the deserts
of North America. Subsequent to this divergence,
however, there are differences in the stem and crown
branch lengths of these three clades, with the starkest
contrast shown between Cylindropuntia I and
Cylindropuntia II (Fig. 1). Cylindropuntia II exem-
plifies the diversification rate increase (Hernandez-
Hernandez et al. 2014) discussed above, but could the
absence of a similar level of diversification and
divergence in Cylindropuntia I to some degree reflect
mode of reproduction? Excluding the triploid spec-
imens (Table 1), normal levels of fertility are reported
for the species of Cylindropuntia II, except C. cholla,
C. fulgida, and C. molesta. In contrast, the taxa of
Cylindropuntia I, C. tunicata, C. bigelovii, and C.

fosbergii, show an almost complete reliance on

asexual reproduction. The range of C. bigelovii var.
bigelovii consists mostly of sterile triploid popula-
tions, with just a few known diploid populations;
interestingly, the narrow Baja California endemic, C.
bigelovii var. ciribe is diploid and fertile (Rebman
2001; Pinkava 2002). Cylindropuntia fosbergii exists
only as sterile triploids in a single diffuse population
in southern California (Mayer et al. 2011; Baker et al.
2012). Some consider C. fosbergii a hybrid between
C. bigelovii and an unidentified species, but Mayer et
al. (2011) found insufficient evidence for a hybrid
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origin of C. fosbergii and hypothesize a sister
relationship for it and C. bigelovii. Cylindropuntia
tunicata exists in diploid and triploid forms, but the
fruits of diploids are mostly sterile (Anderson 2001).
Cylindropuntia rosea (DC.) Backeb., not sampled in
this study, is the only other species of this clade and
while its fertility in its native range (states of Hidalgo
and Puebla, Mexico) is unclear, it reportedly
produces inviable seeds in introduced populations
in Australia (Hosking et al. 2007).

Asexual reproduction is a key reproductive and
survival strategy in chollas (Pinkava 2002), and
asexual lineages in general may possess a theoretical
advantage over sexual lineages in diversification rate
(Barraclough et al. 2003; Fontaneto et al. 2012). But
under the rapidly changing selective pressures of the
Pliocene through the Pleistocene, sexuality may have
proven the superior mechanism for divergence and
speciation of the chollas. Comparisons of genetic
variation within and among populations of sexual
and asexual cholla species would provide valuable
insight into the genetics of adaptation and diver-
gence.

Evolutionary Trends in the Chollas

Among Grusonia species, there is a general trend in
plant stature and stem segment length from taller and
longer, respectively, in the basal clades, to prostrate
and shorter in the more derived clades. This could be
construed as a response to the increasing desertifica-
tion of the region. Most Cylindropuntia species, in
contrast, exhibit an erect, shrubby to tree-like habit,
but include seven species with a “pencil”-like stem
segment morphology. These species, except C.
anteojoensis, are concentrated on two different clades
(C. tesajo/C. ramosissima and C. kleiniae/C. caribaea/
C. lindsayi/C. leptocaulis; Fig. 1), a convergence
suggesting the adaptive advantage to slender stems
during the diversification of these lineages.

Adaptation to a drying climate could also account
for the multiple occurrences of dry fruit production
among the chollas: 3 species in Grusonia and 13 in
Cylindropuntia I (Fig. 1), the latter showing at least
five clades with dry fruit-fleshy fruit sister taxa. This
suggests not only convergence among lineages, but a
more recent (Pleistocene) shift towards a dry, bur-
like fruit—a clear water-saving adaptation. Additional
analysis of morphological trends in Cylindropuntieae
is provided in Majure et al. (2019).

Past efforts to interpret infrageneric morphologi-
cal pattern among the species of Cylindropuntia have
shown limited success. The taxonomic series pro-
posed by Benson (1982) and Hunt (2006), identify
morphological profiles that do not correlate well with
the clade composition revealed in the molecular
analyses presented here and elsewhere (Griffith and
Porter 2009; Barcenas 2016; Majure et al. 2019, etc.).
The phylogenetic patterns revealed in the present
study are largely congruent with other recent studies
involving chloroplast sequences (Barcenas 2016) and
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genomic skimming (Majure et al. 2019) in the chollas,
but provoke new hypotheses of evolutionary pattern
and process. Welcomed future investigations would
focus on the possible synergistic adaptive value of
polyploidy and vegetative propagation in the history
of the chollas, and the parentage of the many hybrid
diploid and polyploid taxa.
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